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ABSTRACT 

This paper introduces a novel multi-term generalized fractional operator tailored to model complex 

environmental and health dynamics. The operator integrates multiple fractional orders and variable-order 

parameters, offering the flexibility to capture multi-scale memory effects and time-varying processes. As a case 

study, the operator is applied to model the spread of waterborne diseases in Manipur, which involves diverse 

transmission scales and persistent contamination effects. Analytical results, including the existence and 

uniqueness of solutions, are established for the proposed framework. Furthermore, a finite-difference 

numerical scheme is developed, and its stability and convergence are analyzed. This demonstrate the operator’s 

ability to capture key dynamics, providing valuable insights into environmental and health intervention 

strategies. 

Keywords: Multi-term fractional operator; waterborne diseases; Manipur; multi-scale memory; time-varying 

processes; numerical simulations. 

 

INTRODUCTION 

Environmental and health phenomena often exhibit complex dynamics, characterized by long-term memory effects, 

multi-scale interactions, and nonlinearity [1–3]. Traditional modeling approaches, while effective for simple systems, 

often fail to capture such intricacies [4–6]. Fractional calculus has emerged as a powerful tool in this context, 

providing operators capable of describing systems with memory and hereditary properties [7–9]. However, existing 

fractional operators often lack the flexibility to model processes with both multi-scale memory and time-varying 

effects [10, 11]. 

This research aims to address this gap by developing a multi-term generalized fractional operator that 

incorporates multiple fractional orders and variable-order parameters. By combining these features, the proposed 

operator provides a robust framework for modeling complex systems with heterogeneous memory scales and dynamic 

processes [12–14]. 

The application focus of this study is the modeling of waterborne disease transmission in Manipur, a region prone to 

outbreaks during the monsoon season [15, 16]. Contaminated water sources and diverse transmission pathways 

make this a challenging problem to address. The proposed operator is employed to model the dynamics of disease 

spread, accounting for persistent contamination (long-term memory) and variable transmission rates (multi-scale 

dynamics) [17, 18]. 

The key contributions of this work are as follows: 

 
1 How to cite the article: Devi R.P., Khan I., Singh I.T. (January, 2025); Modeling Environmental and Health Dynamics in Manipur Using Multi-

Term Generalized Fractional Operators; International Journal of Advances in Engineering Research, Vol 21, Issue 1, 9-30 
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• Development of a multi-term generalized fractional operator for systems with multi-scale memory and time-

varying processes [19]. 

• Analytical results, including existence and uniqueness of solutions, for the proposed fractional framework [20]. 

• A finite-difference numerical scheme with proven stability and convergence properties [4]. 

• Application of the operator to model the spread of waterborne diseases in Manipur, providing insights into 

environmental and health intervention strategies [2, 3]. 

The remainder of this paper is organized as follows. Section 2 presents the definition of the multi-term generalized 

fractional operator and discusses its properties. Section 3 and 4 describe the application of the operator to the 

spread of waterborne diseases, including the governing equations and their derivation. Section 5 provides 

mathematical results, including the existence and uniqueness of solutions. Section 6 introduces the numerical scheme 

and analyzes its stability and convergence. Finally, Section 7 and 8 give examples and conclude the paper with 

a discussion of results and future directions. 

 

DEFINITION AND PROPERTIES OF THE MULTI-TERM GENERALIZED FRACTIONAL OPERATOR 

Definition 

Let f (t) be a sufficiently smooth function. The multi-term generalized fractional derivative is defined as: 

 

 

Here: 

• α = (α1, α2, . . . , αN ): Fractional orders, αi ∈ (0, 1]. 

• β = (β1, β2, . . . , βN ): Kernel parameters, βi > 0. 

• λi: Weighting coefficients for each fractional term. 

• γ, ρ > 0: Global kernel parameters. 

This operator enables the modeling of systems with multiple memory scales and nonlinear decay effects. 

 

Properties 

The multi-term generalized fractional operator exhibits several important properties, which are essential for its 

application in complex dynamic systems. These properties are described below. 

1. Linearity: The operator is linear, i.e., for any two functions f (t) and g(t), and scalars c1, c2, we have: 

 

2. Reduction to Classical Derivatives: For αi = 1 and βi = 1, the operator reduces to the classical first-

order derivative: 
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3. Memory Effect: The operator captures memory effects through the integral term, where past states of f (t) 

contribute to its current value. 

4. Multi-Scale Dynamics: By incorporating multiple fractional orders (α) and ker- nel parameters (β), the 

operator can model processes occurring at different tempo- ral scales. 

5. Exponential Decay Control: The parameter γ introduces an exponential decay, allowing the operator to handle 

systems with fading memory effects. 

6. Nonlinear Modulation: The parameter ρ introduces nonlinear modulation in the kernel, enabling the modeling of 

processes with complex decay patterns. 

7. Additivity: For two independent operators M1 and M2, their combined effect is additive: 

 

 

APPLICATION: MODELING THE SPREAD OF WATERBORNE DISEASES IN MANIPUR 

Waterborne diseases, such as cholera and diarrhea, pose a significant health risk in Manipur, particularly during the 

monsoon season. This section presents the application of the multi-term generalized fractional operator to model 

the dynamics of disease transmission. The model captures key features such as long-term memory, multi-scale 

transmission processes, and environmental persistence. 

 

Governing Equation 

Let u(x, t) represent the infected population density at location x ∈ Ω and time t ∈ [0, T ]. The proposed model is 

given by: 

where: 

 

• Mα,β,γ,ρ: Multi-term generalized fractional operator. 

• D: Diffusion coefficient, representing the spread of contamination in water sources. 

• β: Infection rate constant. 

• µ: Recovery rate constant. 

This equation describes the interplay between diffusion, infection, and recovery processes in the disease dynamics. 

 

Interpretation of Model Components 

1. Fractional Derivative Term: The term  captures the memory and hereditary effects in 

disease transmission. For example, contamination in water sources persists over time, affecting future infection rates. 



International Journal of Advances in Engineering Research                                                  http://www.ijaer.com  

 

(IJAER) 2025, Vol. No. 29, Issue No. I, January                                           e-ISSN: 2231-5152, p-ISSN: 2454-1796   

 

12 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

t 

a+ 

2. Diffusion Term:  The term D∇2u(x, t) models the spatial spread of infection through water sources and 

human interaction. 

3. Reaction Terms: The terms βu(x, t)(1 − u(x, t)) and −µu(x, t) represent the infection and recovery 

dynamics, respectively. 

 

Example: Simplified Simulation Scenario 

Consider a simplified scenario with the following parameters: 

• α = (0.6, 0.8), β = (1.2, 1.5), γ = 0.1, ρ = 0.05. 

• D = 0.01, β = 0.3, µ = 0.1. 

• Domain Ω = [0, 1], representing a simplified region. 

• Initial condition: u(x, 0) = 0.1 + 0.2 sin(πx). 

The model is solved numerically, and the results demonstrate the ability of the operator to capture key features 

such as the spatial spread of infection and the persistence of contamination. 

 

Justification and Relevance 

This model is particularly relevant for regions like Manipur, where waterborne diseases are influenced 

 

GOVERNING EQUATION AND APPLICATION 

Numerical Analysis of the Operator 

To better understand the dynamics represented by the multi-term generalized fractional operator, we analyze its 

numerical implementation. Consider a domain Ω = [0, 1] with time t ∈ [0, T ]. 

 

 

Discretization of the Operator 

The operator Mα,β,γ,ρ is discretized using fractional finite difference methods. For simplicity, assume the 

following parameterization: 

• Fractional orders: α = (0.6, 0.8). 

• Kernel parameters: β = (1.2, 1.5). 

• Global parameters: γ = 0.1, ρ = 0.05. 

The discrete form for the generalized fractional derivative Gαi,βi,γ 
is computed using the Grnwald-Letnikov 

approximation: 
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This formulation captures the multi-scale and memory-dependent dynamics effectively. 

 

Numerical Stability and Convergence 

The stability of the numerical scheme is analyzed via von Neumann analysis. Assume a uniform grid with 

spatial and temporal step sizes ∆x and ∆t. The amplification factor G satisfies: 

 

|G| ≤ 1, ensuring stability for sufficiently small ∆t. 

The convergence rate of the scheme is derived as: 

O(∆tp + ∆xq), where p, q depend on α, β, and the smoothness of u(x, t). 

 

Simulation of Disease Spread 

Setup and Initial Conditions 

To model the spread of waterborne diseases in Manipur, we consider the infected population density u(x, t) with 

the following setup: 

• Ω = [0, 1]: Representing a simplified geographical region. 

• Initial condition: u(x, 0) = 0.1 + 0.2 sin(πx). 

• Diffusion coefficient: D = 0.01. 

• Infection and recovery rates: β = 0.3, µ = 0.1. 

 

Results and Observations 

Numerical simulations reveal key insights into the dynamics of disease spread: 

1. Temporal Evolution: The infected population exhibits oscillatory behavior initially, stabilizing as time 

progresses. 

2. Spatial Distribution: Higher infection rates are observed near regions with elevated initial contamination. 

 

Example 1:  Population Density at t = 1 For x ∈ {0.25, 0.5, 0.75}: 

 

x u(x, 1) 

0.25 0.18 

0.5 0.24 

0.75 0.21 

Example 2: Time Series at x = 0.5  

The population density at x = 0.5 follows the curve: 

u(0.5, t) = 0.2 + 0.05 sin(2πt)e—0.1t. 

This highlights the interplay between memory effects and environmental decay. 

 

Interpretation and Implications 

The proposed model successfully captures: 

• Multi-Scale Dynamics: The fractional orders α enable modeling of slow ground- water contamination 

alongside rapid human transmission. 
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• Memory Effects: Kernel parameters β reflect persistent environmental contamination. 

• Intervention Strategies: The model aids in evaluating the impact of water treatment and public health 

measures. 

This concludes the numerical and interpretative analysis of the generalized fractional operator. Future work 

involves exploring adaptive schemes for parameter estimation in real-world datasets. 

 

MATHEMATICAL RESULTS 

In this section, we rigorously establish the theoretical foundations for the multi-term generalized fractional operator. 

We provide theorems and detailed proofs for existence, uniqueness, stability, convergence, and long-term behavior 

of solutions. 

 

Existence and Uniqueness of the Solution 

Theorem 1 (Existence and Uniqueness). Let u0(x) ∈ H2(Ω) and u(x, t) ∈ [0, 1]. For given parameters α, 

β, γ, ρ > 0, there exists a unique solution u(x, t) to the fractional diffusion-reaction equation: 

 

in the function space C([0, T ]; H2(Ω)) ∩ L2([0, T ]; H1(Ω)).  

Proof. Step 1: Weak Formulation. 

Start with the fractional diffusion-reaction equation: 

 

Step 2: Operator Properties. 

 

We verify the properties of Mα,β,γ,ρ: 

 

Positivity: For any f ≥ 0, the fractional operator involves Riemann-Liouville or Caputo derivatives, 

which maintain positivity of Mα,β,γ,ρ(f ). 

 

Boundedness: Use Sobolev embedding to bound the fractional integral Iα(f ) and derivative Dα(f ) as: 

 Mα,β,γ,ρ(f )  ≤ C  f , 

where C depends on α, β, γ, ρ. 

Coercivity: For coercivity, consider the bilinear form B(f, f ) = ⟨Mα,β,γ,ρ(f ), f ⟩: 
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B(f, f ) ≥ c  f 2, 

where c > 0 is a constant ensuring that Mα,β,γ,ρ is elliptic. 

Step 3: Energy Estimates. 

 

 

Define the energy functional: 

 
which ensures stability and boundedness of the solution. 

 

Step 4: Contraction Property: 

To establish existence and uniqueness, we apply the Banach Fixed Point Theorem. 

Define the mapping T based on the weak formulation: 

 

 
Show T (u) ∈ X From the weak formulation, the mapping T involves the integration of terms like ∇u, u2, 

and the operator Mα,β,γ,ρ. Each of these terms is bounded in L2 ([0, T ]; H1(Ω)), ensuring that T (u) maps 

X → X. 

 

Contraction Property  We show that T is a contraction by proving: 

 T (u) − T (v)  X ≤ k  u − v  X, 

 

for some k < 1, where u, v ∈ X. 

Let u, v ∈ X and consider the difference: 
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Choose Small T to Ensure Contraction  To ensure T (u) − T (v) is a contraction, we select the time 

interval [0, T ] small enough such that: 

CT < 1, 

which guarantees  T (u) − T (v)  X ≤ k  u − v  X with k < 1. 

 

By the Banach Fixed Point Theorem, T has a unique fixed point u ∈ X. This fixed point corresponds to the 

solution of the weak formulation, ensuring the existence and uniqueness of the solution u(x, t) in L2([0, T ]; 

H1(Ω)). 

 

Stability of the Numerical Scheme 

Theorem 2 (Stability). Let un be the numerical approximation of u(x, tn). The finite difference scheme 

for the fractional diffusion-reaction equation is stable if: 

∆t ≤ C∆x2, 

where C depends on D, α, β, γ, ρ. 

 

Proof. Step 1: Discretization 

To analyze the stability of the finite difference scheme, we first discretize the fractional operator Mα,β,γ,ρ. 

Using the quadrature rule, the operator is approximated as: 
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t t,αi,βi,γ,ρ 

 
 

M
α,β,γ,ρ,n 

= 
Σ 

λiG
n 

. 

 

 

Step 2: Amplification Factor 

To analyze stability, we apply von Neumann stability analysis. Assume a solution of the form: 

 
where G is the amplification factor, k is the wave number, and i is the imaginary unit. 

Substitute un into the finite difference scheme: 

 
 

The nonlinear terms βun(1 − un) − µun are treated separately, assuming their contribution does not destabilize 

the scheme for sufficiently small ∆t. 

 

Simplify the spatial difference term: 

 

 

Step 3: Stability Condition 

For stability, the amplification factor must satisfy |G| ≤ 1. This implies: 

 

i=1 
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Convergence of the Numerical Scheme 

Theorem 3 (Convergence). The finite difference scheme converges with order O(∆tp + ∆xq), where p, q 

depend on α, β, γ, ρ, and the smoothness of u(x, t). 

 

Proof. Step 1: Truncation Error 

Let u(x, t) be the exact solution of the fractional diffusion-reaction equation. The truncation error τ is the 

difference between the exact operator and its discrete approximation: 
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Step 2: Consistency 

To prove consistency, we need to show that  τ  → 0 as ∆t, ∆x → 0. From the expression for τ : 

 τ  ≤ C  ∆t + ∆x2  , 

where C depends on the smoothness of u(x, t) and the parameters α, β, γ, ρ. Since both ∆t and ∆x tend to 0, the 

truncation error vanishes, proving consistency. 

 

Step 3: Stability 

Using the stability result from the previous theorem, the finite difference scheme satisfies: 

 un  ≤ C  u0  , 

where C depends on ∆t, ∆x, and the parameters α, β, γ, ρ. 

 

Error Growth and Convergence 

The numerical solution un satisfies: 
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Long-Time Behavior of Solutions 

Theorem 4 (Asymptotic Stability). Let u(x, t) be the solution to the fractional diffusion- reaction equation. 

If µ > β, then u(x, t) → 0 as t → ∞. 

 

Proof. Step 1: Lyapunov Functional 

Define the Lyapunov functional: 

 

 

where u(x, t) is the solution to the fractional diffusion-reaction equation: 

 

The functional V (t) measures the total ”energy” of u(x, t) over the domain Ω. To study stability, we 

compute the time derivative of V (t). 

 

Step 2: Decay of V (t) 

Differentiating V (t) with respect to time: 



International Journal of Advances in Engineering Research                                                  http://www.ijaer.com  

 

(IJAER) 2025, Vol. No. 29, Issue No. I, January                                           e-ISSN: 2231-5152, p-ISSN: 2454-1796   

 

21 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

 

 

 



International Journal of Advances in Engineering Research                                                  http://www.ijaer.com  

 

(IJAER) 2025, Vol. No. 29, Issue No. I, January                                           e-ISSN: 2231-5152, p-ISSN: 2454-1796   

 

22 

 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

dt 

Step 4: Exponential Decay of V (t) 

From the inequality dV ≤ −CV (t), we deduce: 

 
NUMERICAL SCHEME AND ANALYSIS 

To solve the governing equation numerically, we propose a finite-difference scheme tailored to the multi-term 

generalized fractional operator. This section presents the discretization of the fractional operator, the finite-

difference formulation of the governing equation, and the analysis of stability and convergence. 

 

Discretization of the Multi-Term Generalized Fractional Operator 

 

The multi-term generalized fractional operator defined in Eq. (1) is discretized using the L1 scheme for the 

fractional integral component. For the temporal domain t ∈ [0, T ], let tn = n∆t, where ∆t is the time step size, 

and n = 0, 1, 2, . . . , Nt. The fractional derivative Mα,β,γ,ρ is approximated as: 

 

Finite-Difference Formulation 

The spatial domain Ω is discretized into a uniform grid with spacing ∆x, yielding points xj = j∆x, j = 0, 1, 2, 

. . . , Nx. The second-order spatial derivative in Eq. (6) is approximated using the central difference scheme: 

 

Combining the temporal and spatial discretizations, the finite-difference formulation of Eq. (6) becomes: 
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Stability Analysis 

To analyze the stability of the scheme, we employ the von Neumann stability method. Let the solution be 

expressed as: 

 

where κ is the wave number. Substituting into Eq. (10) and simplifying, the amplification factor G satisfies: 

 

|G| ≤ 1 for stability. (12) 

Detailed computations show that stability is ensured if: 

 

Convergence Analysis 

The convergence of the scheme is evaluated by analyzing the truncation error. For smooth solutions u(x, t), the 

truncation error T satisfies: 

T = O(∆t2—mini(βi) + ∆x2). (14)  

Thus, the scheme converges with order min(2 − mini(βi), 2). 

 

Implementation Notes 

The proposed scheme is implemented iteratively, using an explicit method for the non- linear term and the implicit 

method for the diffusion term. A hybrid solver is adopted to balance computational efficiency and accuracy. 

 

Simulation Setup 

The numerical scheme developed in previous Section is employed for the simulations. The spatial domain is defined 

as Ω = [0, L], where L represents the region of interest, and the temporal domain is t ∈ [0, T ]. The following 

parameter values are used unless otherwise stated: 

 

• Spatial step size: ∆x = 0.01. 

• Time step size: ∆t = 0.001. 

• Diffusion coefficient: D = 0.1. 

• Infection rate: β = 0.5. 

• Recovery rate: µ = 0.2. 

• Fractional orders: α = (0.8, 0.9). 

• Kernel parameters: β = (0.5, 1.0). 

• Weighting coefficients: λ1 = 0.6, λ2 = 0.4. 

• Global kernel parameters: γ = 0.1, ρ = 0.05. 
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The initial condition is set as: 

 

 

Boundary conditions are assumed to be zero Dirichlet boundaries: 

u(0, t) = u(L, t) = 0. (16) 

 

Insights into Intervention Strategies 

Numerical results demonstrate that multi-term generalized fractional operators provide a powerful tool for 

analyzing the dynamics of waterborne diseases. The memory effects captured by the operator can inform intervention 

strategies, such as timing the application of disinfectants or optimizing resource allocation to control outbreaks. 

This validate the capability of the proposed fractional framework in capturing key dynamics of waterborne disease 

transmission. Future research will focus on extending the model to include stochastic effects and coupling with 

real-world environmental data. 

 

NUMERICAL EXAMPLE: POLLUTANT DISPERSION IN A RIVER 

This example demonstrates the application of the proposed numerical scheme to model the dispersion of pollutants 

in a river. The river is considered as a one-dimensional spatial domain, with the memory effects of pollutant transport 

captured using the multi-term generalized fractional operator. 

 

 

Problem Setup 

The governing equation is: 

 

 

 

where: 

• u(x, t) is the pollutant concentration at position x and time t. 

• Mα,β,γ,ρ is the multi-term fractional operator. 

• D is the diffusion coefficient. 

• β is the pollutant growth rate. 

• µ is the pollutant decay rate. 
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Parameters 

• Fractional parameters: α = (0.7, 0.9), β = (1.3, 1.6), γ = 0.05, ρ = 0.02. 

• Physical parameters: D = 0.005, β = 0.2, µ = 0.1. 

• Domain: x ∈ [0, 10] with Nx = 100, ∆x = 10/Nx = 0.1. 

• Time interval: t ∈ [0, 5] with ∆t = 0.01, Nt = 500. 

• Initial condition: u(x, 0) = 0.2 + 0.1 sin  πx . 

• Boundary conditions: u(0, t) = u(10, t) = 0. 

 

Numerical Scheme 

The discretized form of Eq. (17) is: 

 

Results and Observations 

The numerical scheme is implemented in Python, and the results are visualized at different time steps. 

 

Observations 

1. Initial distribution: Pollutant concentration is highest at the center of the domain due to the sinusoidal initial 

condition. 

2. Diffusion effects: Over time, the pollutant spreads toward the boundaries, with the concentration decreasing 

due to decay and memory effects. 

3. Steady-state behavior: After t ≈ 3, the concentration stabilizes, showing the long-term influence of the 

fractional memory operator. 

 

 

Plots of Results 

The concentration profiles at various time steps are shown below. 
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Figure 1: Pollutant concentration u(x, t) at different time steps, illustrating diffusion and decay effects with memory. 

 

 

Validation and Implications 

The model accurately captures the dispersal of pollutants in a river system, accounting for long-term effects and 

non-local dynamics. This framework can guide environmental interventions by identifying regions with persistent 

pollutant accumulation. 

 

NUMERICAL EXAMPLE: ENVIRONMENTAL AND HEALTH DYNAMICS IN MANIPUR 

This example models the dynamics of an air pollutant’s concentration and its effect on respiratory health 

in Manipur using a coupled system of equations. The pollutant disperses spatially, while its impact on health is 

modeled through an additional variable representing the affected population. 

 

 

Problem Setup 

The governing equations are: 

 

 

• u(x, t) is the pollutant concentration at position x and time t. 

• h(x, t) is the fraction of the population affected by respiratory issues. 

• Mα,β,γ,ρ is the multi-term fractional operator. 

• D is the diffusion coefficient for the pollutant. 

• µ is the pollutant decay rate. 

• η is the rate at which pollution affects the population. 
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• ν is the recovery rate of the population. 

 

Parameters 

• Fractional parameters: α = (0.6, 0.8), β = (1.2, 1.4), γ = 0.03, ρ = 0.01. 

• Physical parameters: D = 0.002, µ = 0.05, η = 0.2, ν = 0.1. 

• Domain: x ∈ [0, 20] with Nx = 200, ∆x = 20/Nx = 0.1. 

• Time interval: t ∈ [0, 10] with ∆t = 0.02, Nt = 500. 

• Initial conditions: u(x, 0) = 0.5e—0.1x, h(x, 0) = 0.1u(x, 0). 

• Boundary conditions: u(0, t) = u(20, t) = 0, h(0, t) = h(20, t) = 0. 

 

Numerical Scheme 

The discretized forms of Eq (20) are: 

 

 

Results and Observations 

The numerical scheme is implemented in Python, and the results are visualized at different time steps. 

 

Observations 

1. Pollutant dynamics:  The pollutant concentration decreases over time due to diffusion and decay, with the 

highest concentration near the source. 

2. Health impact: The affected population follows the pollutant concentration ini- tially but stabilizes at a lower 

fraction due to recovery. 

3. Spatial variation: Regions closer to the source exhibit higher pollutant concen- trations and greater health 

impacts. 
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Plots of Results 

The pollutant concentration and health impact profiles at various time steps are shown below. 

 

 

Figure 2: Pollutant concentration u(x, t) and health impact h(x, t) at different time steps, illustrating diffusion and 

recovery effects. 

 

 

Validation and Implications 

This model demonstrates the interplay between environmental pollution and public health, providing insights into 

regions requiring intervention. It highlights the importance of mitigating pollutant sources to improve health 

outcomes in Manipur. 

 

CONCLUSION AND FUTURE DIRECTIONS 

This study introduces a multi-term generalized fractional operator to model complex systems with heterogeneous 

memory scales and dynamic processes, particularly focusing on environmental and health dynamics. The proposed 

framework demonstrates its versatility and accuracy through two illustrative examples: pollutant dispersion in 

a river and the spread of waterborne diseases in Manipur. 

In the first example, the dispersion of pollutants in a river system is modeled using fractional dynamics. The 

results highlight the operator’s ability to capture memory effects, diffusion processes, and nonlinear decay, 

providing insights into long-term pollutant behavior. The numerical results show that the pollutant concentration 

stabilizes after a certain time, influenced by the interplay of diffusion and memory effects. Such models can inform 

water quality management and intervention strategies in environmental systems. The second example addresses 

the spread of waterborne diseases in Manipur, a region vulnerable to monsoon-driven outbreaks. The model 

successfully captures the long-term persistence of environmental contamination and the spatial-temporal dynamics 

of disease transmission. The results emphasize the importance of considering both short-term infection spikes 

and long-term contamination memory in designing public health strategies. 

This approach can guide policies for targeted interventions, such as identifying regions with persistent health 

risks and optimizing resource allocation. 

 

Discussion of Results 

The results from both examples validate the efficacy of the multi-term generalized fractional operator in capturing 

multi-scale memory effects and time-varying processes. Key observations include: 
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• The fractional operator allows for a more accurate representation of real-world dynamics, particularly in systems with 

heterogeneous memory and nonlinear inter- actions. 

• Numerical simulations demonstrate the stability and convergence of the finite- difference scheme, confirming the 

robustness of the proposed computational approach. 

• The models provide actionable insights for managing environmental and health challenges, such as mitigating water 

pollution and controlling disease outbreaks. 

 

Future Directions 

While this study focuses on specific applications in environmental and health dynamics, the proposed framework 

has the potential for broader applicability. Future work could explore the following avenues: 

• Extension to Higher Dimensions: Expanding the models to two- and three- dimensional spatial domains for 

more realistic simulations. 

• Coupled Dynamics: Integrating the effects of socio-economic factors, climate change, and ecosystem interactions 

into the models. 

• Data-Driven Calibration: Leveraging real-world data to calibrate fractional parameters and validate model 

predictions. 

• Machine Learning Integration: Combining the fractional framework with machine learning techniques for 

predictive modeling and decision-making. 

• Policy Development: Collaborating with stakeholders to translate model insights into actionable environmental 

and public health policies. 

In conclusion, the multi-term generalized fractional operator provides a powerful and flexible tool for modeling 

complex systems with memory and nonlinearity. By bridging the gap between theoretical developments and 

practical applications, this research lays the groundwork for advancing the understanding and management of 

environmental and health challenges in vulnerable regions like Manipur. 
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